DOUBLE HELIX

In geometry a double helix (plural helices) typically consists of two congruent helices with the same axis, differing by a translation along the axis, which may or may not be half-way.
In molecular biology, the double helix refers to the structure of DNA. The structure of DNA was first published in the journal Nature by James D. Watson and Francis Crick in 1953, based upon data from Maurice Wilkins and Rosalind Franklin. Crick, Wilkins and Watson each received the Nobel Prize for their contributions to the discovery. Franklin died before her contribution could be acknowledged, and due to the fact that they cannot be awarded posthumously, never received a Nobel Prize.
The DNA double helix is a right-handed spiral polymer of nucleic acids, held together by nucleotides which base pair together. A single turn of the helix constitutes ten nucleotides. The double helix structure of DNA contains a major groove and minor groove, the major groove being wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to DNA do so through the wider major groove.
The order, or sequence, of the nucleotides in the double helix within a gene specifies the primary structure of a protein

Organic chemistry is a discipline within chemistry which involves the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of chemical compounds consisting primarily of carbon and hydrogen, which may contain any number of other elements, including nitrogen, oxygen, the halogens as well as phosphorus, silicon and sulfur.
The original definition of "organic" chemistry came from the misconception that organic compounds were always related to life processes. However, organic molecules can be produced by processes not involving life. Life as we know it also depends on inorganic chemistry. For example, many enzymes rely on transition metals such as iron and copper; and materials such as shells, teeth and bones are part organic, part inorganic in composition. Apart from elemental carbon, only certain classes of carbon compounds (such as oxides, carbonates, and carbides) are conventionally considered inorganic. Biochemistry deals mainly with the natural chemistry of biomolecules such as proteins, nucleic acids, and sugars.
Because of their unique properties, multi-carbon compounds exhibit extremely large variety and the range of application of organic compounds is enormous. They form the basis of, or are important constituents of many products (paints, plastics, food, explosives, drugs, petrochemicals, to name but a few) and (apart from a very few exceptions) they form the basis of all earthly life processes.
The different shapes and chemical reactivities of organic molecules provide an astonishing variety of functions, like those of enzyme catalysts in biochemical reactions of live systems.
Current (as of 2008) trends in organic chemistry include chiral synthesis, green chemistry, microwave chemistry, fullerenes and microwave spectroscopy.

Blogger Templates by Blog Forum